Time-dependent changes in learning audiovisual associations: a single-trial fMRI study.
نویسندگان
چکیده
Functional imaging studies of learning and memory have primarily focused on stimulus material presented within a single modality (see review by Gabrieli, 1998, Annu. Rev. Psychol. 49: 87-115). In the present study we investigated mechanisms for learning material presented in visual and auditory modalities, using single-trial functional magnetic resonance imaging. We evaluated time-dependent learning effects under two conditions involving presentation of consistent (repeatedly paired in the same combination) or inconsistent (items presented randomly paired) pairs. We also evaluated time-dependent changes for bimodal (auditory and visual) presentations relative to a condition in which auditory stimuli were repeatedly presented alone. Using a time by condition analysis to compare neural responses to consistent versus inconsistent audiovisual pairs, we found significant time-dependent learning effects in medial parietal and right dorsolateral prefrontal cortices. In contrast, time-dependent effects were seen in left angular gyrus, bilateral anterior cingulate gyrus, and occipital areas bilaterally. A comparison of paired (bimodal) versus unpaired (unimodal) conditions was associated with time-dependent changes in posterior hippocampal and superior frontal regions for both consistent and inconsistent pairs. The results provide evidence that associative learning for stimuli presented in different sensory modalities is supported by neural mechanisms similar to those described for other kinds of memory processes. The involvement of posterior hippocampus and superior frontal gyrus in bimodal learning for both consistent and inconsistent pairs supports a putative function for these regions in associative learning independent of sensory modality.
منابع مشابه
Functionally segregated neural substrates for arbitrary audiovisual paired-association learning.
To clarify the neural substrates and their dynamics during crossmodal association learning, we conducted functional magnetic resonance imaging (MRI) during audiovisual paired-association learning of delayed matching-to-sample tasks. Thirty subjects were involved in the study; 15 performed an audiovisual paired-association learning task, and the remainder completed a control visuo-visual task. E...
متن کاملEnhanced Multisensory Integration and Motor Reactivation after Active Motor Learning of Audiovisual Associations
Everyday experience affords us many opportunities to learn about objects through multiple senses using physical interaction. Previous work has shown that active motor learning of unisensory items enhances memory and leads to the involvement of motor systems during subsequent perception. However, the impact of active motor learning on subsequent perception and recognition of associations among m...
متن کاملQuantifying learning-dependent changes in the brain: Single-trial multivoxel pattern analysis requires slow event-related fMRI.
Single-trial analysis is particularly useful for assessing cognitive processes that are intrinsically dynamic, such as learning. Studying these processes with fMRI is problematic, as the low signal-to-noise ratio of fMRI requires the averaging over multiple trials, obscuring trial-by-trial changes in neural activation. The superior sensitivity of multivoxel pattern analysis over univariate anal...
متن کاملActive Learning of Novel Sound-producing Objects: Motor Reactivation and Enhancement of Visuo-motor Connectivity
Our experience with the world commonly involves physical interaction with objects enabling us to learn associations between multisensory information perceived during an event and our actions that create an event. The interplay among active interactions during learning and multisensory integration of object properties is not well understood. To better understand how action might enhance multisen...
متن کاملTwo Anatomically and Computationally Distinct Learning Signals Predict Changes to Stimulus-Outcome Associations in Hippocampus
Complex cognitive processes require sophisticated local processing but also interactions between distant brain regions. It is therefore critical to be able to study distant interactions between local computations and the neural representations they act on. Here we report two anatomically and computationally distinct learning signals in lateral orbitofrontal cortex (lOFC) and the dopaminergic ve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 11 3 شماره
صفحات -
تاریخ انتشار 2000